Metamath Proof Explorer


Theorem rexdifi

Description: Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023)

Ref Expression
Assertion rexdifi xAφxB¬φxABφ

Proof

Step Hyp Ref Expression
1 df-rex xAφxxAφ
2 df-ral xB¬φxxB¬φ
3 nfa1 xxxB¬φ
4 simprl xxB¬φxAφxA
5 con2 xB¬φφ¬xB
6 5 sps xxB¬φφ¬xB
7 6 com12 φxxB¬φ¬xB
8 7 adantl xAφxxB¬φ¬xB
9 8 impcom xxB¬φxAφ¬xB
10 4 9 eldifd xxB¬φxAφxAB
11 simprr xxB¬φxAφφ
12 10 11 jca xxB¬φxAφxABφ
13 12 ex xxB¬φxAφxABφ
14 3 13 eximd xxB¬φxxAφxxABφ
15 14 impcom xxAφxxB¬φxxABφ
16 1 2 15 syl2anb xAφxB¬φxxABφ
17 df-rex xABφxxABφ
18 16 17 sylibr xAφxB¬φxABφ