Metamath Proof Explorer


Theorem ralralimp

Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018) (Proof shortened by AV, 13-Oct-2018)

Ref Expression
Assertion ralralimp φAxAφθτ¬θτ

Proof

Step Hyp Ref Expression
1 ornld φφθτ¬θτ
2 1 adantr φAφθτ¬θτ
3 2 ralimdv φAxAφθτ¬θxAτ
4 rspn0 AxAττ
5 4 adantl φAxAττ
6 3 5 syld φAxAφθτ¬θτ