Metamath Proof Explorer


Theorem ralrimivva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis ralrimivva.1 φxAyBψ
Assertion ralrimivva φxAyBψ

Proof

Step Hyp Ref Expression
1 ralrimivva.1 φxAyBψ
2 1 ex φxAyBψ
3 2 ralrimivv φxAyBψ