Metamath Proof Explorer


Theorem ralrimivvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis ralrimivvva.1 φ x A y B z C ψ
Assertion ralrimivvva φ x A y B z C ψ

Proof

Step Hyp Ref Expression
1 ralrimivvva.1 φ x A y B z C ψ
2 1 3anassrs φ x A y B z C ψ
3 2 ralrimiva φ x A y B z C ψ
4 3 ralrimiva φ x A y B z C ψ
5 4 ralrimiva φ x A y B z C ψ