Metamath Proof Explorer


Theorem ralsng

Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralsng.1 x=Aφψ
Assertion ralsng AVxAφψ

Proof

Step Hyp Ref Expression
1 ralsng.1 x=Aφψ
2 df-ral xAφxxAφ
3 velsn xAx=A
4 3 imbi1i xAφx=Aφ
5 4 albii xxAφxx=Aφ
6 2 5 bitri xAφxx=Aφ
7 elisset AVxx=A
8 1 pm5.74i x=Aφx=Aψ
9 8 albii xx=Aφxx=Aψ
10 9 a1i xx=Axx=Aφxx=Aψ
11 19.23v xx=Aψxx=Aψ
12 11 a1i xx=Axx=Aψxx=Aψ
13 pm5.5 xx=Axx=Aψψ
14 10 12 13 3bitrd xx=Axx=Aφψ
15 7 14 syl AVxx=Aφψ
16 6 15 bitrid AVxAφψ