Metamath Proof Explorer


Theorem ranval3

Description: The set of right Kan extensions is the set of universal pairs. (Contributed by Zhi Wang, 26-Nov-2025)

Ref Expression
Hypotheses ranval3.o O = oppCat D FuncCat E
ranval3.p P = oppCat C FuncCat E
ranval3.k No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
Assertion ranval3 Could not format assertion : No typesetting found for |- ( F e. ( C Func D ) -> ( F ( <. C , D >. Ran E ) X ) = ( ( oppFunc ` K ) ( O UP P ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ranval3.o O = oppCat D FuncCat E
2 ranval3.p P = oppCat C FuncCat E
3 ranval3.k Could not format K = ( <. D , E >. -o.F F ) : No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
4 id F C Func D F C Func D
5 opex D E V
6 5 a1i F C Func D D E V
7 4 6 prcofelvv Could not format ( F e. ( C Func D ) -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( <. D , E >. -o.F F ) e. ( _V X. _V ) ) with typecode |-
8 1st2nd2 Could not format ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ( <. D , E >. -o.F F ) e. ( _V X. _V ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
9 7 8 syl Could not format ( F e. ( C Func D ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( F e. ( C Func D ) -> ( <. D , E >. -o.F F ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
10 1 2 9 4 ranval2 Could not format ( F e. ( C Func D ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( F ( <. C , D >. Ran E ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) with typecode |-
11 eqid C FuncCat E = C FuncCat E
12 11 fucbas C Func E = Base C FuncCat E
13 2 12 oppcbas C Func E = Base P
14 13 uprcl Could not format ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) -> ( ( oppFunc ` K ) e. ( O Func P ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) -> ( ( oppFunc ` K ) e. ( O Func P ) /\ X e. ( C Func E ) ) ) with typecode |-
15 14 simprd Could not format ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) -> X e. ( C Func E ) ) : No typesetting found for |- ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) -> X e. ( C Func E ) ) with typecode |-
16 15 adantl Could not format ( ( F e. ( C Func D ) /\ x e. ( ( oppFunc ` K ) ( O UP P ) X ) ) -> X e. ( C Func E ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( ( oppFunc ` K ) ( O UP P ) X ) ) -> X e. ( C Func E ) ) with typecode |-
17 13 uprcl Could not format ( x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) -> ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. e. ( O Func P ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) -> ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. e. ( O Func P ) /\ X e. ( C Func E ) ) ) with typecode |-
18 17 simprd Could not format ( x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) -> X e. ( C Func E ) ) : No typesetting found for |- ( x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) -> X e. ( C Func E ) ) with typecode |-
19 18 adantl Could not format ( ( F e. ( C Func D ) /\ x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) -> X e. ( C Func E ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) -> X e. ( C Func E ) ) with typecode |-
20 eqid D FuncCat E = D FuncCat E
21 funcrcl X C Func E C Cat E Cat
22 21 simprd X C Func E E Cat
23 22 adantl F C Func D X C Func E E Cat
24 simpl F C Func D X C Func E F C Func D
25 20 23 11 24 prcoffunca Could not format ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) ) with typecode |-
26 3 fveq2i Could not format ( oppFunc ` K ) = ( oppFunc ` ( <. D , E >. -o.F F ) ) : No typesetting found for |- ( oppFunc ` K ) = ( oppFunc ` ( <. D , E >. -o.F F ) ) with typecode |-
27 oppfval2 Could not format ( ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) -> ( oppFunc ` ( <. D , E >. -o.F F ) ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) -> ( oppFunc ` ( <. D , E >. -o.F F ) ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
28 26 27 eqtrid Could not format ( ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) -> ( oppFunc ` K ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ( <. D , E >. -o.F F ) e. ( ( D FuncCat E ) Func ( C FuncCat E ) ) -> ( oppFunc ` K ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
29 25 28 syl Could not format ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( oppFunc ` K ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( oppFunc ` K ) = <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ) with typecode |-
30 29 oveq1d Could not format ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( ( oppFunc ` K ) ( O UP P ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( ( oppFunc ` K ) ( O UP P ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) with typecode |-
31 30 eleq2d Could not format ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) <-> x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ X e. ( C Func E ) ) -> ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) <-> x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) ) with typecode |-
32 16 19 31 bibiad Could not format ( F e. ( C Func D ) -> ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) <-> x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( x e. ( ( oppFunc ` K ) ( O UP P ) X ) <-> x e. ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) ) with typecode |-
33 32 eqrdv Could not format ( F e. ( C Func D ) -> ( ( oppFunc ` K ) ( O UP P ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( ( oppFunc ` K ) ( O UP P ) X ) = ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , tpos ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( O UP P ) X ) ) with typecode |-
34 10 33 eqtr4d Could not format ( F e. ( C Func D ) -> ( F ( <. C , D >. Ran E ) X ) = ( ( oppFunc ` K ) ( O UP P ) X ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( F ( <. C , D >. Ran E ) X ) = ( ( oppFunc ` K ) ( O UP P ) X ) ) with typecode |-