Metamath Proof Explorer


Theorem rblem6

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rblem6.1 ¬¬¬φψ¬¬ψφ
Assertion rblem6 ¬φψ

Proof

Step Hyp Ref Expression
1 rblem6.1 ¬¬¬φψ¬¬ψφ
2 rb-ax4 ¬¬¬φψ¬¬φψ¬¬φψ
3 rb-ax3 ¬¬¬φψ¬¬φψ¬¬φψ
4 2 3 rbsyl ¬¬¬φψ¬¬φψ
5 rb-ax2 ¬¬¬¬φψ¬¬φψ¬¬φψ¬¬¬φψ
6 4 5 anmp ¬¬φψ¬¬¬φψ
7 rblem3 ¬¬¬φψ¬¬¬φψ¬¬φψ¬¬ψφ¬¬¬φψ
8 6 7 anmp ¬¬φψ¬¬ψφ¬¬¬φψ
9 rb-ax2 ¬¬¬φψ¬¬ψφ¬¬¬φψ¬¬¬φψ¬¬φψ¬¬ψφ
10 8 9 anmp ¬¬¬φψ¬¬φψ¬¬ψφ
11 rblem5 ¬¬¬¬φψ¬¬φψ¬¬ψφ¬¬¬¬φψ¬¬ψφ¬φψ
12 10 11 anmp ¬¬¬¬φψ¬¬ψφ¬φψ
13 1 12 anmp ¬φψ