Metamath Proof Explorer


Theorem rblem7

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rblem7.1 ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ
Assertion rblem7 ¬ ψ φ

Proof

Step Hyp Ref Expression
1 rblem7.1 ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ
2 rb-ax3 ¬ ¬ ¬ ψ φ ¬ ¬ φ ψ ¬ ¬ ψ φ
3 rblem5 ¬ ¬ ¬ ¬ ψ φ ¬ ¬ φ ψ ¬ ¬ ψ φ ¬ ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ ¬ ψ φ
4 2 3 anmp ¬ ¬ ¬ ¬ φ ψ ¬ ¬ ψ φ ¬ ψ φ
5 1 4 anmp ¬ ψ φ