Metamath Proof Explorer


Theorem rbsyl

Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rbsyl.1 ¬ψχ
rbsyl.2 φψ
Assertion rbsyl φχ

Proof

Step Hyp Ref Expression
1 rbsyl.1 ¬ψχ
2 rbsyl.2 φψ
3 rb-ax1 ¬¬ψχ¬φψφχ
4 1 3 anmp ¬φψφχ
5 2 4 anmp φχ