Metamath Proof Explorer


Theorem rdglem1

Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995)

Ref Expression
Assertion rdglem1 f|xOnfFnxyxfy=Gfy=g|zOngFnzwzgw=Ggw

Proof

Step Hyp Ref Expression
1 eqid f|xOnfFnxyxfy=Gfy=f|xOnfFnxyxfy=Gfy
2 1 tfrlem3 f|xOnfFnxyxfy=Gfy=g|zOngFnzvzgv=Ggv
3 fveq2 v=wgv=gw
4 reseq2 v=wgv=gw
5 4 fveq2d v=wGgv=Ggw
6 3 5 eqeq12d v=wgv=Ggvgw=Ggw
7 6 cbvralvw vzgv=Ggvwzgw=Ggw
8 7 anbi2i gFnzvzgv=GgvgFnzwzgw=Ggw
9 8 rexbii zOngFnzvzgv=GgvzOngFnzwzgw=Ggw
10 9 abbii g|zOngFnzvzgv=Ggv=g|zOngFnzwzgw=Ggw
11 2 10 eqtri f|xOnfFnxyxfy=Gfy=g|zOngFnzwzgw=Ggw