Metamath Proof Explorer


Theorem rdglim

Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion rdglim BCLimBrecFAB=recFAB

Proof

Step Hyp Ref Expression
1 limelon BCLimBBOn
2 rdgfnon recFAFnOn
3 fndm recFAFnOndomrecFA=On
4 2 3 ax-mp domrecFA=On
5 1 4 eleqtrrdi BCLimBBdomrecFA
6 rdglimg BdomrecFALimBrecFAB=recFAB
7 5 6 sylancom BCLimBrecFAB=recFAB