Metamath Proof Explorer


Theorem rdgseg

Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion rdgseg BdomrecFArecFABV

Proof

Step Hyp Ref Expression
1 df-rdg recFA=recsgVifg=AifLimdomgrangFgdomg
2 1 reseq1i recFAB=recsgVifg=AifLimdomgrangFgdomgB
3 rdglem1 w|yOnwFnyvywv=gVifg=AifLimdomgrangFgdomgwv=f|xOnfFnxyxfy=gVifg=AifLimdomgrangFgdomgfy
4 3 tfrlem9a BdomrecsgVifg=AifLimdomgrangFgdomgrecsgVifg=AifLimdomgrangFgdomgBV
5 1 dmeqi domrecFA=domrecsgVifg=AifLimdomgrangFgdomg
6 4 5 eleq2s BdomrecFArecsgVifg=AifLimdomgrangFgdomgBV
7 2 6 eqeltrid BdomrecFArecFABV