Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
readdid1
Next ⟩
resubid1
Metamath Proof Explorer
Ascii
Unicode
Theorem
readdid1
Description:
Real number version of
addid1
, without
ax-mulcom
.
(Contributed by
SN
, 23-Jan-2024)
Ref
Expression
Assertion
readdid1
⊢
A
∈
ℝ
→
A
+
0
=
A
Proof
Step
Hyp
Ref
Expression
1
resubid
⊢
A
∈
ℝ
→
A
-
ℝ
A
=
0
2
id
⊢
A
∈
ℝ
→
A
∈
ℝ
3
elre0re
⊢
A
∈
ℝ
→
0
∈
ℝ
4
2
2
3
resubaddd
⊢
A
∈
ℝ
→
A
-
ℝ
A
=
0
↔
A
+
0
=
A
5
1
4
mpbid
⊢
A
∈
ℝ
→
A
+
0
=
A