Metamath Proof Explorer


Theorem recl

Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion recl AA

Proof

Step Hyp Ref Expression
1 reval AA=A+A2
2 cjth AA+AiAA
3 2 simpld AA+A
4 3 rehalfcld AA+A2
5 1 4 eqeltrd AA