Metamath Proof Explorer


Theorem recnperf

Description: Both RR and CC are perfect subsets of CC . (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypothesis recnperf.k K=TopOpenfld
Assertion recnperf SK𝑡SPerf

Proof

Step Hyp Ref Expression
1 recnperf.k K=TopOpenfld
2 elpri SS=S=
3 oveq2 S=K𝑡S=K𝑡
4 1 reperf K𝑡Perf
5 3 4 eqeltrdi S=K𝑡SPerf
6 oveq2 S=K𝑡S=K𝑡
7 1 cnfldtopon KTopOn
8 7 toponunii =K
9 8 restid KTopOnK𝑡=K
10 7 9 ax-mp K𝑡=K
11 1 cnperf KPerf
12 10 11 eqeltri K𝑡Perf
13 6 12 eqeltrdi S=K𝑡SPerf
14 5 13 jaoi S=S=K𝑡SPerf
15 2 14 syl SK𝑡SPerf