Metamath Proof Explorer


Theorem recotcl

Description: The closure of the cotangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014)

Ref Expression
Assertion recotcl AsinA0cotA

Proof

Step Hyp Ref Expression
1 recn AA
2 cotval AsinA0cotA=cosAsinA
3 1 2 sylan AsinA0cotA=cosAsinA
4 resincl AsinA
5 recoscl AcosA
6 redivcl cosAsinAsinA0cosAsinA
7 5 6 syl3an1 AsinAsinA0cosAsinA
8 4 7 syl3an2 AAsinA0cosAsinA
9 8 3anidm12 AsinA0cosAsinA
10 3 9 eqeltrd AsinA0cotA