| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | cotval |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) | 
						
							| 4 |  | resincl |  |-  ( A e. RR -> ( sin ` A ) e. RR ) | 
						
							| 5 |  | recoscl |  |-  ( A e. RR -> ( cos ` A ) e. RR ) | 
						
							| 6 |  | redivcl |  |-  ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. RR ) | 
						
							| 7 | 5 6 | syl3an1 |  |-  ( ( A e. RR /\ ( sin ` A ) e. RR /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. RR ) | 
						
							| 8 | 4 7 | syl3an2 |  |-  ( ( A e. RR /\ A e. RR /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. RR ) | 
						
							| 9 | 8 | 3anidm12 |  |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) / ( sin ` A ) ) e. RR ) | 
						
							| 10 | 3 9 | eqeltrd |  |-  ( ( A e. RR /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) e. RR ) |