| Step |
Hyp |
Ref |
Expression |
| 1 |
|
secval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sec ` A ) = ( 1 / ( cos ` A ) ) ) |
| 2 |
1
|
oveq2d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( sec ` A ) ) = ( 1 / ( 1 / ( cos ` A ) ) ) ) |
| 3 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 4 |
|
recrec |
|- ( ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( 1 / ( cos ` A ) ) ) = ( cos ` A ) ) |
| 5 |
3 4
|
sylan |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( 1 / ( cos ` A ) ) ) = ( cos ` A ) ) |
| 6 |
2 5
|
eqtr2d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) = ( 1 / ( sec ` A ) ) ) |