| Step |
Hyp |
Ref |
Expression |
| 1 |
|
secval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) ) |
| 2 |
1
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( sec ‘ 𝐴 ) ) = ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) ) |
| 3 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
|
recrec |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) = ( cos ‘ 𝐴 ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) = ( cos ‘ 𝐴 ) ) |
| 6 |
2 5
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) = ( 1 / ( sec ‘ 𝐴 ) ) ) |