Metamath Proof Explorer


Theorem recsec

Description: The reciprocal of secant is cosine. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion recsec ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) = ( 1 / ( sec ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 secval ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) )
2 1 oveq2d ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( sec ‘ 𝐴 ) ) = ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) )
3 coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )
4 recrec ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) = ( cos ‘ 𝐴 ) )
5 3 4 sylan ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( cos ‘ 𝐴 ) ) ) = ( cos ‘ 𝐴 ) )
6 2 5 eqtr2d ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) = ( 1 / ( sec ‘ 𝐴 ) ) )