| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cscval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( csc ‘ 𝐴 )  =  ( 1  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( csc ‘ 𝐴 ) )  =  ( 1  /  ( 1  /  ( sin ‘ 𝐴 ) ) ) ) | 
						
							| 3 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | recrec | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( 1  /  ( sin ‘ 𝐴 ) ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  /  ( 1  /  ( sin ‘ 𝐴 ) ) )  =  ( sin ‘ 𝐴 ) ) | 
						
							| 6 | 2 5 | eqtr2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( sin ‘ 𝐴 )  =  ( 1  /  ( csc ‘ 𝐴 ) ) ) |