Step |
Hyp |
Ref |
Expression |
1 |
|
cscval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) ) |
2 |
1
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( csc ‘ 𝐴 ) ) = ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) ) |
3 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
4 |
|
recrec |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) = ( sin ‘ 𝐴 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) = ( sin ‘ 𝐴 ) ) |
6 |
2 5
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) = ( 1 / ( csc ‘ 𝐴 ) ) ) |