Metamath Proof Explorer


Theorem reccsc

Description: The reciprocal of cosecant is sine. (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion reccsc ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) = ( 1 / ( csc ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cscval ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) )
2 1 oveq2d ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( csc ‘ 𝐴 ) ) = ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) )
3 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
4 recrec ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) = ( sin ‘ 𝐴 ) )
5 3 4 sylan ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( 1 / ( sin ‘ 𝐴 ) ) ) = ( sin ‘ 𝐴 ) )
6 2 5 eqtr2d ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) = ( 1 / ( csc ‘ 𝐴 ) ) )