Metamath Proof Explorer


Theorem reccot

Description: The reciprocal of cotangent is tangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion reccot ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( 1 / ( cot ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sincl ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ )
2 coscl ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ )
3 recdiv ( ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
4 2 3 sylanl1 ( ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
5 1 4 sylanr1 ( ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
6 5 3impdi ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
7 6 3com23 ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
8 cotval ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )
9 8 3adant3 ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) )
10 9 oveq2d ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( cot ‘ 𝐴 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) )
11 tanval ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
12 11 3adant2 ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) )
13 7 10 12 3eqtr4rd ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( 1 / ( cot ‘ 𝐴 ) ) )