Step |
Hyp |
Ref |
Expression |
1 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
recdiv |
⊢ ( ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
4 |
2 3
|
sylanl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
5 |
1 4
|
sylanr1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
6 |
5
|
3impdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
7 |
6
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
8 |
|
cotval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( cot ‘ 𝐴 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) ) |
11 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
12 |
11
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
13 |
7 10 12
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( 1 / ( cot ‘ 𝐴 ) ) ) |