Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for David A. Wheeler
Reciprocal trigonometric functions (sec, csc, cot)
reccot
Next ⟩
rectan
Metamath Proof Explorer
Ascii
Unicode
Theorem
reccot
Description:
The reciprocal of cotangent is tangent.
(Contributed by
David A. Wheeler
, 21-Mar-2014)
Ref
Expression
Assertion
reccot
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
1
cot
⁡
A
Proof
Step
Hyp
Ref
Expression
1
sincl
⊢
A
∈
ℂ
→
sin
⁡
A
∈
ℂ
2
coscl
⊢
A
∈
ℂ
→
cos
⁡
A
∈
ℂ
3
recdiv
⊢
cos
⁡
A
∈
ℂ
∧
cos
⁡
A
≠
0
∧
sin
⁡
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
1
cos
⁡
A
sin
⁡
A
=
sin
⁡
A
cos
⁡
A
4
2
3
sylanl1
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
∧
sin
⁡
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
1
cos
⁡
A
sin
⁡
A
=
sin
⁡
A
cos
⁡
A
5
1
4
sylanr1
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
∧
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
1
cos
⁡
A
sin
⁡
A
=
sin
⁡
A
cos
⁡
A
6
5
3impdi
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
∧
sin
⁡
A
≠
0
→
1
cos
⁡
A
sin
⁡
A
=
sin
⁡
A
cos
⁡
A
7
6
3com23
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
1
cos
⁡
A
sin
⁡
A
=
sin
⁡
A
cos
⁡
A
8
cotval
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
9
8
3adant3
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
10
9
oveq2d
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
1
cot
⁡
A
=
1
cos
⁡
A
sin
⁡
A
11
tanval
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
12
11
3adant2
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
13
7
10
12
3eqtr4rd
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
1
cot
⁡
A