Metamath Proof Explorer


Theorem reccot

Description: The reciprocal of cotangent is tangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion reccot A sin A 0 cos A 0 tan A = 1 cot A

Proof

Step Hyp Ref Expression
1 sincl A sin A
2 coscl A cos A
3 recdiv cos A cos A 0 sin A sin A 0 1 cos A sin A = sin A cos A
4 2 3 sylanl1 A cos A 0 sin A sin A 0 1 cos A sin A = sin A cos A
5 1 4 sylanr1 A cos A 0 A sin A 0 1 cos A sin A = sin A cos A
6 5 3impdi A cos A 0 sin A 0 1 cos A sin A = sin A cos A
7 6 3com23 A sin A 0 cos A 0 1 cos A sin A = sin A cos A
8 cotval A sin A 0 cot A = cos A sin A
9 8 3adant3 A sin A 0 cos A 0 cot A = cos A sin A
10 9 oveq2d A sin A 0 cos A 0 1 cot A = 1 cos A sin A
11 tanval A cos A 0 tan A = sin A cos A
12 11 3adant2 A sin A 0 cos A 0 tan A = sin A cos A
13 7 10 12 3eqtr4rd A sin A 0 cos A 0 tan A = 1 cot A