Metamath Proof Explorer


Theorem reccot

Description: The reciprocal of cotangent is tangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion reccot
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( 1 / ( cot ` A ) ) )

Proof

Step Hyp Ref Expression
1 sincl
 |-  ( A e. CC -> ( sin ` A ) e. CC )
2 coscl
 |-  ( A e. CC -> ( cos ` A ) e. CC )
3 recdiv
 |-  ( ( ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) /\ ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) ) -> ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) = ( ( sin ` A ) / ( cos ` A ) ) )
4 2 3 sylanl1
 |-  ( ( ( A e. CC /\ ( cos ` A ) =/= 0 ) /\ ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) ) -> ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) = ( ( sin ` A ) / ( cos ` A ) ) )
5 1 4 sylanr1
 |-  ( ( ( A e. CC /\ ( cos ` A ) =/= 0 ) /\ ( A e. CC /\ ( sin ` A ) =/= 0 ) ) -> ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) = ( ( sin ` A ) / ( cos ` A ) ) )
6 5 3impdi
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) = ( ( sin ` A ) / ( cos ` A ) ) )
7 6 3com23
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) = ( ( sin ` A ) / ( cos ` A ) ) )
8 cotval
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) )
9 8 3adant3
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) )
10 9 oveq2d
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( cot ` A ) ) = ( 1 / ( ( cos ` A ) / ( sin ` A ) ) ) )
11 tanval
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) )
12 11 3adant2
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) )
13 7 10 12 3eqtr4rd
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( 1 / ( cot ` A ) ) )