Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
2 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
3 |
|
recdiv |
|- ( ( ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
4 |
2 3
|
sylanl1 |
|- ( ( ( A e. CC /\ ( sin ` A ) =/= 0 ) /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
5 |
1 4
|
sylanr1 |
|- ( ( ( A e. CC /\ ( sin ` A ) =/= 0 ) /\ ( A e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
6 |
5
|
3impdi |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
7 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( tan ` A ) ) = ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) ) |
10 |
|
cotval |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
11 |
10
|
3adant3 |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) |
12 |
6 9 11
|
3eqtr4rd |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( 1 / ( tan ` A ) ) ) |