Metamath Proof Explorer


Theorem rectan

Description: The reciprocal of tangent is cotangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion rectan
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( 1 / ( tan ` A ) ) )

Proof

Step Hyp Ref Expression
1 coscl
 |-  ( A e. CC -> ( cos ` A ) e. CC )
2 sincl
 |-  ( A e. CC -> ( sin ` A ) e. CC )
3 recdiv
 |-  ( ( ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) )
4 2 3 sylanl1
 |-  ( ( ( A e. CC /\ ( sin ` A ) =/= 0 ) /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) )
5 1 4 sylanr1
 |-  ( ( ( A e. CC /\ ( sin ` A ) =/= 0 ) /\ ( A e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) )
6 5 3impdi
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) = ( ( cos ` A ) / ( sin ` A ) ) )
7 tanval
 |-  ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) )
8 7 3adant2
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) )
9 8 oveq2d
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( 1 / ( tan ` A ) ) = ( 1 / ( ( sin ` A ) / ( cos ` A ) ) ) )
10 cotval
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) )
11 10 3adant3
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) )
12 6 9 11 3eqtr4rd
 |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 /\ ( cos ` A ) =/= 0 ) -> ( cot ` A ) = ( 1 / ( tan ` A ) ) )