Metamath Proof Explorer


Theorem rectan

Description: The reciprocal of tangent is cotangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion rectan A sin A 0 cos A 0 cot A = 1 tan A

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 sincl A sin A
3 recdiv sin A sin A 0 cos A cos A 0 1 sin A cos A = cos A sin A
4 2 3 sylanl1 A sin A 0 cos A cos A 0 1 sin A cos A = cos A sin A
5 1 4 sylanr1 A sin A 0 A cos A 0 1 sin A cos A = cos A sin A
6 5 3impdi A sin A 0 cos A 0 1 sin A cos A = cos A sin A
7 tanval A cos A 0 tan A = sin A cos A
8 7 3adant2 A sin A 0 cos A 0 tan A = sin A cos A
9 8 oveq2d A sin A 0 cos A 0 1 tan A = 1 sin A cos A
10 cotval A sin A 0 cot A = cos A sin A
11 10 3adant3 A sin A 0 cos A 0 cot A = cos A sin A
12 6 9 11 3eqtr4rd A sin A 0 cos A 0 cot A = 1 tan A