Metamath Proof Explorer


Theorem rectan

Description: The reciprocal of tangent is cotangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion rectan AsinA0cosA0cotA=1tanA

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 sincl AsinA
3 recdiv sinAsinA0cosAcosA01sinAcosA=cosAsinA
4 2 3 sylanl1 AsinA0cosAcosA01sinAcosA=cosAsinA
5 1 4 sylanr1 AsinA0AcosA01sinAcosA=cosAsinA
6 5 3impdi AsinA0cosA01sinAcosA=cosAsinA
7 tanval AcosA0tanA=sinAcosA
8 7 3adant2 AsinA0cosA0tanA=sinAcosA
9 8 oveq2d AsinA0cosA01tanA=1sinAcosA
10 cotval AsinA0cotA=cosAsinA
11 10 3adant3 AsinA0cosA0cotA=cosAsinA
12 6 9 11 3eqtr4rd AsinA0cosA0cotA=1tanA