Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for David A. Wheeler
Reciprocal trigonometric functions (sec, csc, cot)
rectan
Next ⟩
sec0
Metamath Proof Explorer
Ascii
Unicode
Theorem
rectan
Description:
The reciprocal of tangent is cotangent.
(Contributed by
David A. Wheeler
, 21-Mar-2014)
Ref
Expression
Assertion
rectan
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
cot
⁡
A
=
1
tan
⁡
A
Proof
Step
Hyp
Ref
Expression
1
coscl
⊢
A
∈
ℂ
→
cos
⁡
A
∈
ℂ
2
sincl
⊢
A
∈
ℂ
→
sin
⁡
A
∈
ℂ
3
recdiv
⊢
sin
⁡
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
1
sin
⁡
A
cos
⁡
A
=
cos
⁡
A
sin
⁡
A
4
2
3
sylanl1
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
1
sin
⁡
A
cos
⁡
A
=
cos
⁡
A
sin
⁡
A
5
1
4
sylanr1
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
1
sin
⁡
A
cos
⁡
A
=
cos
⁡
A
sin
⁡
A
6
5
3impdi
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
1
sin
⁡
A
cos
⁡
A
=
cos
⁡
A
sin
⁡
A
7
tanval
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
8
7
3adant2
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
9
8
oveq2d
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
1
tan
⁡
A
=
1
sin
⁡
A
cos
⁡
A
10
cotval
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
11
10
3adant3
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
cot
⁡
A
=
cos
⁡
A
sin
⁡
A
12
6
9
11
3eqtr4rd
⊢
A
∈
ℂ
∧
sin
⁡
A
≠
0
∧
cos
⁡
A
≠
0
→
cot
⁡
A
=
1
tan
⁡
A