| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
|
recdiv |
⊢ ( ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
sylanl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 5 |
1 4
|
sylanr1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) → ( 1 / ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 6 |
5
|
3impdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 7 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 / ( tan ‘ 𝐴 ) ) = ( 1 / ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
| 10 |
|
cotval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 12 |
6 9 11
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( 1 / ( tan ‘ 𝐴 ) ) ) |