Metamath Proof Explorer


Theorem sec0

Description: The value of the secant function at zero is one. (Contributed by David A. Wheeler, 16-Mar-2014)

Ref Expression
Assertion sec0 ( sec ‘ 0 ) = 1

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 cos0 ( cos ‘ 0 ) = 1
3 ax-1ne0 1 ≠ 0
4 2 3 eqnetri ( cos ‘ 0 ) ≠ 0
5 secval ( ( 0 ∈ ℂ ∧ ( cos ‘ 0 ) ≠ 0 ) → ( sec ‘ 0 ) = ( 1 / ( cos ‘ 0 ) ) )
6 1 4 5 mp2an ( sec ‘ 0 ) = ( 1 / ( cos ‘ 0 ) )
7 2 oveq2i ( 1 / ( cos ‘ 0 ) ) = ( 1 / 1 )
8 1div1e1 ( 1 / 1 ) = 1
9 6 7 8 3eqtri ( sec ‘ 0 ) = 1