Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
sqeq0 |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( cos ‘ 𝐴 ) = 0 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) = 0 ↔ ( cos ‘ 𝐴 ) = 0 ) ) |
4 |
3
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
5 |
4
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
6 |
1
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
7 |
|
divid |
⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
9 |
5 8
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 1 = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
11 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
15 |
|
expdiv |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ 2 ∈ ℕ0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
16 |
14 15
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ 2 ∈ ℕ0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
17 |
13 16
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
18 |
17
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
19 |
1 18
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
20 |
19
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
21 |
12 20
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
22 |
10 21
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( tan ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
23 |
14
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
24 |
|
divdir |
⊢ ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
25 |
6 24
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
26 |
23 25
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
27 |
26
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
28 |
27
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
29 |
6 28
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
30 |
29
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
31 |
5 30
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
32 |
22 31
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( tan ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
33 |
23 6
|
addcomd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
34 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
35 |
33 34
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
36 |
35
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( cos ‘ 𝐴 ) ↑ 2 ) + ( ( sin ‘ 𝐴 ) ↑ 2 ) ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
38 |
32 37
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( tan ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
39 |
|
secval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sec ‘ 𝐴 ) = ( 1 / ( cos ‘ 𝐴 ) ) ) |
40 |
39
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sec ‘ 𝐴 ) ↑ 2 ) = ( ( 1 / ( cos ‘ 𝐴 ) ) ↑ 2 ) ) |
41 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
42 |
|
expdiv |
⊢ ( ( 1 ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ∧ 2 ∈ ℕ0 ) → ( ( 1 / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
43 |
41 13 42
|
mp3an13 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
44 |
1 43
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
45 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
46 |
45
|
oveq1i |
⊢ ( ( 1 ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) |
47 |
44 46
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
48 |
40 47
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sec ‘ 𝐴 ) ↑ 2 ) = ( 1 / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
49 |
38 48
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( tan ‘ 𝐴 ) ↑ 2 ) ) = ( ( sec ‘ 𝐴 ) ↑ 2 ) ) |