| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cotval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( cot ‘ 𝐴 ) = ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ) |
| 2 |
1
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( cot ‘ 𝐴 ) ↑ 2 ) = ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( cot ‘ 𝐴 ) ↑ 2 ) ) = ( 1 + ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 4 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 7 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
7
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 10 |
|
sqne0 |
⊢ ( ( sin ‘ 𝐴 ) ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( sin ‘ 𝐴 ) ≠ 0 ) ) |
| 11 |
7 10
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( sin ‘ 𝐴 ) ≠ 0 ) ) |
| 12 |
11
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 13 |
9 12
|
dividd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) = ( 1 + ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 15 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 16 |
15
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 18 |
9 17 9 12
|
divdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) + ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 19 |
15 7
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) ) |
| 20 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 21 |
|
expdiv |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ∧ 2 ∈ ℕ0 ) → ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 22 |
20 21
|
mp3an3 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 23 |
22
|
anassrs |
⊢ ( ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 |
19 23
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) = ( 1 + ( ( ( cos ‘ 𝐴 ) ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 26 |
14 18 25
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 27 |
|
cscval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( csc ‘ 𝐴 ) = ( 1 / ( sin ‘ 𝐴 ) ) ) |
| 28 |
27
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( csc ‘ 𝐴 ) ↑ 2 ) = ( ( 1 / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) |
| 29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 30 |
|
expdiv |
⊢ ( ( 1 ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) ∧ 2 ∈ ℕ0 ) → ( ( 1 / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 31 |
29 20 30
|
mp3an13 |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 32 |
7 31
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( ( 1 ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 33 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 34 |
33
|
oveq1i |
⊢ ( ( 1 ↑ 2 ) / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) = ( 1 / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) |
| 35 |
32 34
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( 1 / ( sin ‘ 𝐴 ) ) ↑ 2 ) = ( 1 / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 36 |
28 35
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( csc ‘ 𝐴 ) ↑ 2 ) = ( 1 / ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) |
| 37 |
6 26 36
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( ( csc ‘ 𝐴 ) ↑ 2 ) = ( 1 + ( ( ( cos ‘ 𝐴 ) / ( sin ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 38 |
3 37
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) ≠ 0 ) → ( 1 + ( ( cot ‘ 𝐴 ) ↑ 2 ) ) = ( ( csc ‘ 𝐴 ) ↑ 2 ) ) |