| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cotval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( cot ‘ 𝐴 )  =  ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( cot ‘ 𝐴 ) ↑ 2 )  =  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  +  ( ( cot ‘ 𝐴 ) ↑ 2 ) )  =  ( 1  +  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 4 |  | sincossq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  ( 1  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  ( 1  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 7 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 7 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 10 |  | sqne0 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( sin ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  0  ↔  ( sin ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 12 | 11 | biimpar | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ≠  0 ) | 
						
							| 13 | 9 12 | dividd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) )  =  ( 1  +  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 15 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 16 | 15 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 18 | 9 17 9 12 | divdird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  +  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 19 | 15 7 | jca | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ∈  ℂ ) ) | 
						
							| 20 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 21 |  | expdiv | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  ∧  2  ∈  ℕ0 )  →  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 22 | 20 21 | mp3an3 | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 ) )  →  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 23 | 22 | anassrs | ⊢ ( ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ∈  ℂ )  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 24 | 19 23 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  +  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) )  =  ( 1  +  ( ( ( cos ‘ 𝐴 ) ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) ) | 
						
							| 26 | 14 18 25 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  +  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) )  =  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 27 |  | cscval | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( csc ‘ 𝐴 )  =  ( 1  /  ( sin ‘ 𝐴 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( csc ‘ 𝐴 ) ↑ 2 )  =  ( ( 1  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 29 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 30 |  | expdiv | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  ∧  2  ∈  ℕ0 )  →  ( ( 1  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 1 ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 31 | 29 20 30 | mp3an13 | ⊢ ( ( ( sin ‘ 𝐴 )  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( 1  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 1 ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 32 | 7 31 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( 1  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( ( 1 ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 33 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 34 | 33 | oveq1i | ⊢ ( ( 1 ↑ 2 )  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) )  =  ( 1  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 35 | 32 34 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( 1  /  ( sin ‘ 𝐴 ) ) ↑ 2 )  =  ( 1  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 36 | 28 35 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( csc ‘ 𝐴 ) ↑ 2 )  =  ( 1  /  ( ( sin ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 37 | 6 26 36 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( ( csc ‘ 𝐴 ) ↑ 2 )  =  ( 1  +  ( ( ( cos ‘ 𝐴 )  /  ( sin ‘ 𝐴 ) ) ↑ 2 ) ) ) | 
						
							| 38 | 3 37 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( sin ‘ 𝐴 )  ≠  0 )  →  ( 1  +  ( ( cot ‘ 𝐴 ) ↑ 2 ) )  =  ( ( csc ‘ 𝐴 ) ↑ 2 ) ) |