Step |
Hyp |
Ref |
Expression |
1 |
|
cotval |
|
2 |
1
|
oveq1d |
|
3 |
2
|
oveq2d |
|
4 |
|
sincossq |
|
5 |
4
|
oveq1d |
|
6 |
5
|
adantr |
|
7 |
|
sincl |
|
8 |
7
|
sqcld |
|
9 |
8
|
adantr |
|
10 |
|
sqne0 |
|
11 |
7 10
|
syl |
|
12 |
11
|
biimpar |
|
13 |
9 12
|
dividd |
|
14 |
13
|
oveq1d |
|
15 |
|
coscl |
|
16 |
15
|
sqcld |
|
17 |
16
|
adantr |
|
18 |
9 17 9 12
|
divdird |
|
19 |
15 7
|
jca |
|
20 |
|
2nn0 |
|
21 |
|
expdiv |
|
22 |
20 21
|
mp3an3 |
|
23 |
22
|
anassrs |
|
24 |
19 23
|
sylan |
|
25 |
24
|
oveq2d |
|
26 |
14 18 25
|
3eqtr4rd |
|
27 |
|
cscval |
|
28 |
27
|
oveq1d |
|
29 |
|
ax-1cn |
|
30 |
|
expdiv |
|
31 |
29 20 30
|
mp3an13 |
|
32 |
7 31
|
sylan |
|
33 |
|
sq1 |
|
34 |
33
|
oveq1i |
|
35 |
32 34
|
eqtrdi |
|
36 |
28 35
|
eqtrd |
|
37 |
6 26 36
|
3eqtr4rd |
|
38 |
3 37
|
eqtr4d |
|