| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cotval |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( cot ` A ) = ( ( cos ` A ) / ( sin ` A ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( cot ` A ) ^ 2 ) = ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 + ( ( cot ` A ) ^ 2 ) ) = ( 1 + ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) ) ) | 
						
							| 4 |  | sincossq |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) | 
						
							| 5 | 4 | oveq1d |  |-  ( A e. CC -> ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) / ( ( sin ` A ) ^ 2 ) ) = ( 1 / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) / ( ( sin ` A ) ^ 2 ) ) = ( 1 / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 7 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 8 | 7 | sqcld |  |-  ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) e. CC ) | 
						
							| 10 |  | sqne0 |  |-  ( ( sin ` A ) e. CC -> ( ( ( sin ` A ) ^ 2 ) =/= 0 <-> ( sin ` A ) =/= 0 ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) =/= 0 <-> ( sin ` A ) =/= 0 ) ) | 
						
							| 12 | 11 | biimpar |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( sin ` A ) ^ 2 ) =/= 0 ) | 
						
							| 13 | 9 12 | dividd |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( ( sin ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) = 1 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) + ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) = ( 1 + ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) ) | 
						
							| 15 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 16 | 15 | sqcld |  |-  ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) e. CC ) | 
						
							| 18 | 9 17 9 12 | divdird |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) / ( ( sin ` A ) ^ 2 ) ) = ( ( ( ( sin ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) + ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) ) | 
						
							| 19 | 15 7 | jca |  |-  ( A e. CC -> ( ( cos ` A ) e. CC /\ ( sin ` A ) e. CC ) ) | 
						
							| 20 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 21 |  | expdiv |  |-  ( ( ( cos ` A ) e. CC /\ ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) /\ 2 e. NN0 ) -> ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) = ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 22 | 20 21 | mp3an3 |  |-  ( ( ( cos ` A ) e. CC /\ ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) ) -> ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) = ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 23 | 22 | anassrs |  |-  ( ( ( ( cos ` A ) e. CC /\ ( sin ` A ) e. CC ) /\ ( sin ` A ) =/= 0 ) -> ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) = ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 24 | 19 23 | sylan |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) = ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 + ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) ) = ( 1 + ( ( ( cos ` A ) ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) ) | 
						
							| 26 | 14 18 25 | 3eqtr4rd |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 + ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) ) = ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 27 |  | cscval |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( csc ` A ) ^ 2 ) = ( ( 1 / ( sin ` A ) ) ^ 2 ) ) | 
						
							| 29 |  | ax-1cn |  |-  1 e. CC | 
						
							| 30 |  | expdiv |  |-  ( ( 1 e. CC /\ ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) /\ 2 e. NN0 ) -> ( ( 1 / ( sin ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 31 | 29 20 30 | mp3an13 |  |-  ( ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( 1 / ( sin ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 32 | 7 31 | sylan |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( 1 / ( sin ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 33 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 34 | 33 | oveq1i |  |-  ( ( 1 ^ 2 ) / ( ( sin ` A ) ^ 2 ) ) = ( 1 / ( ( sin ` A ) ^ 2 ) ) | 
						
							| 35 | 32 34 | eqtrdi |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( 1 / ( sin ` A ) ) ^ 2 ) = ( 1 / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 36 | 28 35 | eqtrd |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( csc ` A ) ^ 2 ) = ( 1 / ( ( sin ` A ) ^ 2 ) ) ) | 
						
							| 37 | 6 26 36 | 3eqtr4rd |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( ( csc ` A ) ^ 2 ) = ( 1 + ( ( ( cos ` A ) / ( sin ` A ) ) ^ 2 ) ) ) | 
						
							| 38 | 3 37 | eqtr4d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 + ( ( cot ` A ) ^ 2 ) ) = ( ( csc ` A ) ^ 2 ) ) |