Metamath Proof Explorer


Theorem onetansqsecsq

Description: Prove the tangent squared secant squared identity ( 1 + ( ( tan A ) ^ 2 ) ) = ( ( sec A ) ^ 2 ) ) . (Contributed by David A. Wheeler, 25-May-2015)

Ref Expression
Assertion onetansqsecsq A cos A 0 1 + tan A 2 = sec A 2

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 sqeq0 cos A cos A 2 = 0 cos A = 0
3 1 2 syl A cos A 2 = 0 cos A = 0
4 3 necon3bid A cos A 2 0 cos A 0
5 4 biimpar A cos A 0 cos A 2 0
6 1 sqcld A cos A 2
7 divid cos A 2 cos A 2 0 cos A 2 cos A 2 = 1
8 6 7 sylan A cos A 2 0 cos A 2 cos A 2 = 1
9 5 8 syldan A cos A 0 cos A 2 cos A 2 = 1
10 9 eqcomd A cos A 0 1 = cos A 2 cos A 2
11 tanval A cos A 0 tan A = sin A cos A
12 11 oveq1d A cos A 0 tan A 2 = sin A cos A 2
13 2nn0 2 0
14 sincl A sin A
15 expdiv sin A cos A cos A 0 2 0 sin A cos A 2 = sin A 2 cos A 2
16 14 15 syl3an1 A cos A cos A 0 2 0 sin A cos A 2 = sin A 2 cos A 2
17 13 16 mp3an3 A cos A cos A 0 sin A cos A 2 = sin A 2 cos A 2
18 17 3impb A cos A cos A 0 sin A cos A 2 = sin A 2 cos A 2
19 1 18 syl3an2 A A cos A 0 sin A cos A 2 = sin A 2 cos A 2
20 19 3anidm12 A cos A 0 sin A cos A 2 = sin A 2 cos A 2
21 12 20 eqtrd A cos A 0 tan A 2 = sin A 2 cos A 2
22 10 21 oveq12d A cos A 0 1 + tan A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
23 14 sqcld A sin A 2
24 divdir cos A 2 sin A 2 cos A 2 cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
25 6 24 syl3an1 A sin A 2 cos A 2 cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
26 23 25 syl3an2 A A cos A 2 cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
27 26 3anidm12 A cos A 2 cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
28 27 3impb A cos A 2 cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
29 6 28 syl3an2 A A cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
30 29 3anidm12 A cos A 2 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
31 5 30 syldan A cos A 0 cos A 2 + sin A 2 cos A 2 = cos A 2 cos A 2 + sin A 2 cos A 2
32 22 31 eqtr4d A cos A 0 1 + tan A 2 = cos A 2 + sin A 2 cos A 2
33 23 6 addcomd A sin A 2 + cos A 2 = cos A 2 + sin A 2
34 sincossq A sin A 2 + cos A 2 = 1
35 33 34 eqtr3d A cos A 2 + sin A 2 = 1
36 35 oveq1d A cos A 2 + sin A 2 cos A 2 = 1 cos A 2
37 36 adantr A cos A 0 cos A 2 + sin A 2 cos A 2 = 1 cos A 2
38 32 37 eqtrd A cos A 0 1 + tan A 2 = 1 cos A 2
39 secval A cos A 0 sec A = 1 cos A
40 39 oveq1d A cos A 0 sec A 2 = 1 cos A 2
41 ax-1cn 1
42 expdiv 1 cos A cos A 0 2 0 1 cos A 2 = 1 2 cos A 2
43 41 13 42 mp3an13 cos A cos A 0 1 cos A 2 = 1 2 cos A 2
44 1 43 sylan A cos A 0 1 cos A 2 = 1 2 cos A 2
45 sq1 1 2 = 1
46 45 oveq1i 1 2 cos A 2 = 1 cos A 2
47 44 46 eqtrdi A cos A 0 1 cos A 2 = 1 cos A 2
48 40 47 eqtrd A cos A 0 sec A 2 = 1 cos A 2
49 38 48 eqtr4d A cos A 0 1 + tan A 2 = sec A 2