| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscl |
|
| 2 |
|
sqeq0 |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
necon3bid |
|
| 5 |
4
|
biimpar |
|
| 6 |
1
|
sqcld |
|
| 7 |
|
divid |
|
| 8 |
6 7
|
sylan |
|
| 9 |
5 8
|
syldan |
|
| 10 |
9
|
eqcomd |
|
| 11 |
|
tanval |
|
| 12 |
11
|
oveq1d |
|
| 13 |
|
2nn0 |
|
| 14 |
|
sincl |
|
| 15 |
|
expdiv |
|
| 16 |
14 15
|
syl3an1 |
|
| 17 |
13 16
|
mp3an3 |
|
| 18 |
17
|
3impb |
|
| 19 |
1 18
|
syl3an2 |
|
| 20 |
19
|
3anidm12 |
|
| 21 |
12 20
|
eqtrd |
|
| 22 |
10 21
|
oveq12d |
|
| 23 |
14
|
sqcld |
|
| 24 |
|
divdir |
|
| 25 |
6 24
|
syl3an1 |
|
| 26 |
23 25
|
syl3an2 |
|
| 27 |
26
|
3anidm12 |
|
| 28 |
27
|
3impb |
|
| 29 |
6 28
|
syl3an2 |
|
| 30 |
29
|
3anidm12 |
|
| 31 |
5 30
|
syldan |
|
| 32 |
22 31
|
eqtr4d |
|
| 33 |
23 6
|
addcomd |
|
| 34 |
|
sincossq |
|
| 35 |
33 34
|
eqtr3d |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
adantr |
|
| 38 |
32 37
|
eqtrd |
|
| 39 |
|
secval |
|
| 40 |
39
|
oveq1d |
|
| 41 |
|
ax-1cn |
|
| 42 |
|
expdiv |
|
| 43 |
41 13 42
|
mp3an13 |
|
| 44 |
1 43
|
sylan |
|
| 45 |
|
sq1 |
|
| 46 |
45
|
oveq1i |
|
| 47 |
44 46
|
eqtrdi |
|
| 48 |
40 47
|
eqtrd |
|
| 49 |
38 48
|
eqtr4d |
|