Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|
2 |
|
sqeq0 |
|
3 |
1 2
|
syl |
|
4 |
3
|
necon3bid |
|
5 |
4
|
biimpar |
|
6 |
1
|
sqcld |
|
7 |
|
divid |
|
8 |
6 7
|
sylan |
|
9 |
5 8
|
syldan |
|
10 |
9
|
eqcomd |
|
11 |
|
tanval |
|
12 |
11
|
oveq1d |
|
13 |
|
2nn0 |
|
14 |
|
sincl |
|
15 |
|
expdiv |
|
16 |
14 15
|
syl3an1 |
|
17 |
13 16
|
mp3an3 |
|
18 |
17
|
3impb |
|
19 |
1 18
|
syl3an2 |
|
20 |
19
|
3anidm12 |
|
21 |
12 20
|
eqtrd |
|
22 |
10 21
|
oveq12d |
|
23 |
14
|
sqcld |
|
24 |
|
divdir |
|
25 |
6 24
|
syl3an1 |
|
26 |
23 25
|
syl3an2 |
|
27 |
26
|
3anidm12 |
|
28 |
27
|
3impb |
|
29 |
6 28
|
syl3an2 |
|
30 |
29
|
3anidm12 |
|
31 |
5 30
|
syldan |
|
32 |
22 31
|
eqtr4d |
|
33 |
23 6
|
addcomd |
|
34 |
|
sincossq |
|
35 |
33 34
|
eqtr3d |
|
36 |
35
|
oveq1d |
|
37 |
36
|
adantr |
|
38 |
32 37
|
eqtrd |
|
39 |
|
secval |
|
40 |
39
|
oveq1d |
|
41 |
|
ax-1cn |
|
42 |
|
expdiv |
|
43 |
41 13 42
|
mp3an13 |
|
44 |
1 43
|
sylan |
|
45 |
|
sq1 |
|
46 |
45
|
oveq1i |
|
47 |
44 46
|
eqtrdi |
|
48 |
40 47
|
eqtrd |
|
49 |
38 48
|
eqtr4d |
|