Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
2 |
|
sqeq0 |
|- ( ( cos ` A ) e. CC -> ( ( ( cos ` A ) ^ 2 ) = 0 <-> ( cos ` A ) = 0 ) ) |
3 |
1 2
|
syl |
|- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) = 0 <-> ( cos ` A ) = 0 ) ) |
4 |
3
|
necon3bid |
|- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) =/= 0 <-> ( cos ` A ) =/= 0 ) ) |
5 |
4
|
biimpar |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( cos ` A ) ^ 2 ) =/= 0 ) |
6 |
1
|
sqcld |
|- ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) |
7 |
|
divid |
|- ( ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) -> ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = 1 ) |
8 |
6 7
|
sylan |
|- ( ( A e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) -> ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = 1 ) |
9 |
5 8
|
syldan |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = 1 ) |
10 |
9
|
eqcomd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 1 = ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
11 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
12 |
11
|
oveq1d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) ) |
13 |
|
2nn0 |
|- 2 e. NN0 |
14 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
15 |
|
expdiv |
|- ( ( ( sin ` A ) e. CC /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) /\ 2 e. NN0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
16 |
14 15
|
syl3an1 |
|- ( ( A e. CC /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) /\ 2 e. NN0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
17 |
13 16
|
mp3an3 |
|- ( ( A e. CC /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
18 |
17
|
3impb |
|- ( ( A e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
19 |
1 18
|
syl3an2 |
|- ( ( A e. CC /\ A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
20 |
19
|
3anidm12 |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( sin ` A ) / ( cos ` A ) ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
21 |
12 20
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( tan ` A ) ^ 2 ) = ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
22 |
10 21
|
oveq12d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 + ( ( tan ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
23 |
14
|
sqcld |
|- ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) |
24 |
|
divdir |
|- ( ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC /\ ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
25 |
6 24
|
syl3an1 |
|- ( ( A e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC /\ ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
26 |
23 25
|
syl3an2 |
|- ( ( A e. CC /\ A e. CC /\ ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
27 |
26
|
3anidm12 |
|- ( ( A e. CC /\ ( ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
28 |
27
|
3impb |
|- ( ( A e. CC /\ ( ( cos ` A ) ^ 2 ) e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
29 |
6 28
|
syl3an2 |
|- ( ( A e. CC /\ A e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
30 |
29
|
3anidm12 |
|- ( ( A e. CC /\ ( ( cos ` A ) ^ 2 ) =/= 0 ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
31 |
5 30
|
syldan |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) + ( ( ( sin ` A ) ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) ) |
32 |
22 31
|
eqtr4d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 + ( ( tan ` A ) ^ 2 ) ) = ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) ) |
33 |
23 6
|
addcomd |
|- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) |
34 |
|
sincossq |
|- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
35 |
33 34
|
eqtr3d |
|- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = 1 ) |
36 |
35
|
oveq1d |
|- ( A e. CC -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) ) |
37 |
36
|
adantr |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) / ( ( cos ` A ) ^ 2 ) ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) ) |
38 |
32 37
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 + ( ( tan ` A ) ^ 2 ) ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) ) |
39 |
|
secval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sec ` A ) = ( 1 / ( cos ` A ) ) ) |
40 |
39
|
oveq1d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sec ` A ) ^ 2 ) = ( ( 1 / ( cos ` A ) ) ^ 2 ) ) |
41 |
|
ax-1cn |
|- 1 e. CC |
42 |
|
expdiv |
|- ( ( 1 e. CC /\ ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) /\ 2 e. NN0 ) -> ( ( 1 / ( cos ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
43 |
41 13 42
|
mp3an13 |
|- ( ( ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( 1 / ( cos ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
44 |
1 43
|
sylan |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( 1 / ( cos ` A ) ) ^ 2 ) = ( ( 1 ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) ) |
45 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
46 |
45
|
oveq1i |
|- ( ( 1 ^ 2 ) / ( ( cos ` A ) ^ 2 ) ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) |
47 |
44 46
|
eqtrdi |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( 1 / ( cos ` A ) ) ^ 2 ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) ) |
48 |
40 47
|
eqtrd |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sec ` A ) ^ 2 ) = ( 1 / ( ( cos ` A ) ^ 2 ) ) ) |
49 |
38 48
|
eqtr4d |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( 1 + ( ( tan ` A ) ^ 2 ) ) = ( ( sec ` A ) ^ 2 ) ) |