| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cscval |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) ) |
| 2 |
1
|
oveq2d |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( csc ` A ) ) = ( 1 / ( 1 / ( sin ` A ) ) ) ) |
| 3 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 4 |
|
recrec |
|- ( ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( 1 / ( sin ` A ) ) ) = ( sin ` A ) ) |
| 5 |
3 4
|
sylan |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( 1 / ( sin ` A ) ) ) = ( sin ` A ) ) |
| 6 |
2 5
|
eqtr2d |
|- ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) = ( 1 / ( csc ` A ) ) ) |