| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cscval |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( csc ` A ) = ( 1 / ( sin ` A ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( csc ` A ) ) = ( 1 / ( 1 / ( sin ` A ) ) ) ) | 
						
							| 3 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 4 |  | recrec |  |-  ( ( ( sin ` A ) e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( 1 / ( sin ` A ) ) ) = ( sin ` A ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( 1 / ( 1 / ( sin ` A ) ) ) = ( sin ` A ) ) | 
						
							| 6 | 2 5 | eqtr2d |  |-  ( ( A e. CC /\ ( sin ` A ) =/= 0 ) -> ( sin ` A ) = ( 1 / ( csc ` A ) ) ) |