Metamath Proof Explorer


Theorem redundeq1

Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Hypothesis redundeq1.1 A=D
Assertion redundeq1 ARedundBCDRedundBC

Proof

Step Hyp Ref Expression
1 redundeq1.1 A=D
2 1 sseq1i ABDB
3 1 ineq1i AC=DC
4 3 eqeq1i AC=BCDC=BC
5 2 4 anbi12i ABAC=BCDBDC=BC
6 df-redund ARedundBCABAC=BC
7 df-redund DRedundBCDBDC=BC
8 5 6 7 3bitr4i ARedundBCDRedundBC