Metamath Proof Explorer


Theorem reexpcld

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 φA
reexpcld.2 φN0
Assertion reexpcld φAN

Proof

Step Hyp Ref Expression
1 reexpcld.1 φA
2 reexpcld.2 φN0
3 reexpcl AN0AN
4 1 2 3 syl2anc φAN