Metamath Proof Explorer


Theorem ref5

Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 12-Dec-2023)

Ref Expression
Assertion ref5 IA×BRxABxRx

Proof

Step Hyp Ref Expression
1 equcom y=xx=y
2 1 imbi1i y=xxRyx=yxRy
3 2 ralbii yBy=xxRyyBx=yxRy
4 breq2 y=xxRyxRx
5 4 ceqsralbv yBy=xxRyxBxRx
6 3 5 bitr3i yBx=yxRyxBxRx
7 6 ralbii xAyBx=yxRyxAxBxRx
8 idinxpss IA×BRxAyBx=yxRy
9 ralin xABxRxxAxBxRx
10 7 8 9 3bitr4i IA×BRxABxRx