Metamath Proof Explorer


Theorem inxpss3

Description: Two ways to say that an intersection with a Cartesian product is a subclass (see also inxpss ). (Contributed by Peter Mazsa, 8-Mar-2019)

Ref Expression
Assertion inxpss3 xyxRA×ByxSA×ByxAyBxRyxSy

Proof

Step Hyp Ref Expression
1 brinxp2 xRA×ByxAyBxRy
2 brinxp2 xSA×ByxAyBxSy
3 1 2 imbi12i xRA×ByxSA×ByxAyBxRyxAyBxSy
4 imdistan xAyBxRyxSyxAyBxRyxAyBxSy
5 3 4 bitr4i xRA×ByxSA×ByxAyBxRyxSy
6 5 2albii xyxRA×ByxSA×ByxyxAyBxRyxSy
7 r2al xAyBxRyxSyxyxAyBxRyxSy
8 6 7 bitr4i xyxRA×ByxSA×ByxAyBxRyxSy