Step |
Hyp |
Ref |
Expression |
1 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
2 |
1
|
imbi1i |
⊢ ( ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
4 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) |
5 |
4
|
ceqsralbv |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 = 𝑥 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
6 |
3 5
|
bitr3i |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
7 |
6
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
8 |
|
idinxpss |
⊢ ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
9 |
|
ralin |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 𝑅 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝑥 𝑅 𝑥 ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ( I ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝑥 𝑅 𝑥 ) |