Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Reflexivity
refrelid
Next ⟩
refrelcoss
Metamath Proof Explorer
Ascii
Unicode
Theorem
refrelid
Description:
Identity relation is reflexive.
(Contributed by
Peter Mazsa
, 25-Jul-2021)
Ref
Expression
Assertion
refrelid
⊢
RefRel
I
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
I
∩
dom
⁡
I
×
ran
⁡
I
⊆
I
∩
dom
⁡
I
×
ran
⁡
I
2
reli
⊢
Rel
⁡
I
3
df-refrel
⊢
RefRel
I
↔
I
∩
dom
⁡
I
×
ran
⁡
I
⊆
I
∩
dom
⁡
I
×
ran
⁡
I
∧
Rel
⁡
I
4
1
2
3
mpbir2an
⊢
RefRel
I