Metamath Proof Explorer


Theorem refrelsredund2

Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelsredund2 rRels|IdomrrRedundRefRelsEqvRels

Proof

Step Hyp Ref Expression
1 refrelsredund4 rRels|IdomrrRedundRefRelsRefRelsSymRels
2 df-eqvrels EqvRels=RefRelsSymRelsTrRels
3 inss1 RefRelsSymRelsTrRelsRefRelsSymRels
4 2 3 eqsstri EqvRelsRefRelsSymRels
5 4 redundss3 rRels|IdomrrRedundRefRelsRefRelsSymRelsrRels|IdomrrRedundRefRelsEqvRels
6 1 5 ax-mp rRels|IdomrrRedundRefRelsEqvRels