Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 ) in the class of equivalence relations. (Contributed by Peter Mazsa, 26-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelsredund2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelsredund4 | |
|
2 | df-eqvrels | |
|
3 | inss1 | |
|
4 | 2 3 | eqsstri | |
5 | 4 | redundss3 | |
6 | 1 5 | ax-mp | |