Metamath Proof Explorer


Theorem refsymrel3

Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the A. x e. dom R x R x version for its reflexive part, not just the A. x e. dom R A. y e. ran R ( x = y -> x R y ) version of dfrefrel3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 23-Aug-2021)

Ref Expression
Assertion refsymrel3 RefRelRSymRelRxdomRxRxxyxRyyRxRelR

Proof

Step Hyp Ref Expression
1 dfrefrel3 RefRelRxdomRyranRx=yxRyRelR
2 dfsymrel3 SymRelRxyxRyyRxRelR
3 1 2 anbi12i RefRelRSymRelRxdomRyranRx=yxRyRelRxyxRyyRxRelR
4 anandi3r xdomRyranRx=yxRyRelRxyxRyyRxxdomRyranRx=yxRyRelRxyxRyyRxRelR
5 3anan32 xdomRyranRx=yxRyRelRxyxRyyRxxdomRyranRx=yxRyxyxRyyRxRelR
6 3 4 5 3bitr2i RefRelRSymRelRxdomRyranRx=yxRyxyxRyyRxRelR
7 symrefref3 xyxRyyRxxdomRyranRx=yxRyxdomRxRx
8 7 pm5.32ri xdomRyranRx=yxRyxyxRyyRxxdomRxRxxyxRyyRx
9 8 anbi1i xdomRyranRx=yxRyxyxRyyRxRelRxdomRxRxxyxRyyRxRelR
10 6 9 bitri RefRelRSymRelRxdomRxRxxyxRyyRxRelR