Metamath Proof Explorer


Theorem symrefref3

Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 . (Contributed by Peter Mazsa, 23-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Assertion symrefref3 xyxRyyRxxdomRyranRx=yxRyxdomRxRx

Proof

Step Hyp Ref Expression
1 symrefref2 R-1RIdomR×ranRRIdomRR
2 cnvsym R-1RxyxRyyRx
3 idinxpss IdomR×ranRRxdomRyranRx=yxRy
4 idrefALT IdomRRxdomRxRx
5 3 4 bibi12i IdomR×ranRRIdomRRxdomRyranRx=yxRyxdomRxRx
6 1 2 5 3imtr3i xyxRyyRxxdomRyranRx=yxRyxdomRxRx