Metamath Proof Explorer


Theorem symrefref3

Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 . (Contributed by Peter Mazsa, 23-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Assertion symrefref3 ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 symrefref2 ( 𝑅𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) )
2 cnvsym ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
3 idinxpss ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) )
4 idrefALT ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 )
5 3 4 bibi12i ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) )
6 1 2 5 3imtr3i ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) )