| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symrefref2 |
⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |
| 2 |
|
cnvsym |
⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 3 |
|
idinxpss |
⊢ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) |
| 4 |
|
idrefALT |
⊢ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) |
| 5 |
3 4
|
bibi12i |
⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |
| 6 |
1 2 5
|
3imtr3i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |