Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref3 . (Contributed by Peter Mazsa, 19-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrefref2 | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnss | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ran ◡ 𝑅 ⊆ ran 𝑅 ) | |
| 2 | rncnv | ⊢ ran ◡ 𝑅 = dom 𝑅 | |
| 3 | 2 | sseq1i | ⊢ ( ran ◡ 𝑅 ⊆ ran 𝑅 ↔ dom 𝑅 ⊆ ran 𝑅 ) |
| 4 | 3 | biimpi | ⊢ ( ran ◡ 𝑅 ⊆ ran 𝑅 → dom 𝑅 ⊆ ran 𝑅 ) |
| 5 | idreseqidinxp | ⊢ ( dom 𝑅 ⊆ ran 𝑅 → ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) = ( I ↾ dom 𝑅 ) ) | |
| 6 | 1 4 5 | 3syl | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) = ( I ↾ dom 𝑅 ) ) |
| 7 | 6 | sseq1d | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |