Metamath Proof Explorer


Theorem elrefsymrels2

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 22-Jul-2019)

Ref Expression
Assertion elrefsymrels2 R RefRels SymRels I dom R R R -1 R R Rels

Proof

Step Hyp Ref Expression
1 refsymrels2 RefRels SymRels = r Rels | I dom r r r -1 r
2 dmeq r = R dom r = dom R
3 2 reseq2d r = R I dom r = I dom R
4 id r = R r = R
5 3 4 sseq12d r = R I dom r r I dom R R
6 cnveq r = R r -1 = R -1
7 6 4 sseq12d r = R r -1 r R -1 R
8 5 7 anbi12d r = R I dom r r r -1 r I dom R R R -1 R
9 1 8 rabeqel R RefRels SymRels I dom R R R -1 R R Rels