| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refsymrels2 |
|- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
| 2 |
|
dmeq |
|- ( r = R -> dom r = dom R ) |
| 3 |
2
|
reseq2d |
|- ( r = R -> ( _I |` dom r ) = ( _I |` dom R ) ) |
| 4 |
|
id |
|- ( r = R -> r = R ) |
| 5 |
3 4
|
sseq12d |
|- ( r = R -> ( ( _I |` dom r ) C_ r <-> ( _I |` dom R ) C_ R ) ) |
| 6 |
|
cnveq |
|- ( r = R -> `' r = `' R ) |
| 7 |
6 4
|
sseq12d |
|- ( r = R -> ( `' r C_ r <-> `' R C_ R ) ) |
| 8 |
5 7
|
anbi12d |
|- ( r = R -> ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) <-> ( ( _I |` dom R ) C_ R /\ `' R C_ R ) ) ) |
| 9 |
1 8
|
rabeqel |
|- ( R e. ( RefRels i^i SymRels ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ R e. Rels ) ) |