Metamath Proof Explorer


Theorem elrefsymrels2

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 22-Jul-2019)

Ref Expression
Assertion elrefsymrels2 ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 refsymrels2 ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 𝑟𝑟 ) }
2 dmeq ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 )
3 2 reseq2d ( 𝑟 = 𝑅 → ( I ↾ dom 𝑟 ) = ( I ↾ dom 𝑅 ) )
4 id ( 𝑟 = 𝑅𝑟 = 𝑅 )
5 3 4 sseq12d ( 𝑟 = 𝑅 → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) )
6 cnveq ( 𝑟 = 𝑅 𝑟 = 𝑅 )
7 6 4 sseq12d ( 𝑟 = 𝑅 → ( 𝑟𝑟 𝑅𝑅 ) )
8 5 7 anbi12d ( 𝑟 = 𝑅 → ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 𝑟𝑟 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ) )
9 1 8 rabeqel ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ∧ 𝑅 ∈ Rels ) )