Metamath Proof Explorer


Theorem elrefsymrels3

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 ) can use the A. x e. dom R x R x version for their reflexive part, not just the A. x e. dom R A. y e. ran R ( x = y -> x R y ) version of dfrefrels3 , cf. the comment of dfrefrel3 . (Contributed by Peter Mazsa, 22-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion elrefsymrels3 ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 elrefsymrels2 ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ∧ 𝑅 ∈ Rels ) )
2 idrefALT ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 )
3 cnvsym ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
4 2 3 anbi12i ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
5 4 anbi1i ( ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 𝑅𝑅 ) ∧ 𝑅 ∈ Rels ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) ∧ 𝑅 ∈ Rels ) )
6 1 5 bitri ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) ∧ 𝑅 ∈ Rels ) )