Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefsymrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( 𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ) | |
| 2 | elrefrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) ) | |
| 3 | elsymrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ SymRels ↔ SymRel 𝑅 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) ) |
| 5 | 1 4 | bitrid | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) ) |