Metamath Proof Explorer


Theorem elrefsymrelsrel

Description: For sets, being an element of the class of reflexive and symmetric relations is equivalent to satisfying the reflexive and symmetric relation predicates. (Contributed by Peter Mazsa, 23-Aug-2021)

Ref Expression
Assertion elrefsymrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 elin ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( 𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) )
2 elrefrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ RefRels ↔ RefRel 𝑅 ) )
3 elsymrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ SymRels ↔ SymRel 𝑅 ) )
4 2 3 anbi12d ( 𝑅𝑉 → ( ( 𝑅 ∈ RefRels ∧ 𝑅 ∈ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) )
5 1 4 syl5bb ( 𝑅𝑉 → ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ) ) )